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Summary 

With the  availability of a new primary  f requency 
standard,  NBS-5 at the  National  Bureau of Standards, 
we  have  been  able  to  evaluate  with  greater  confidence 
than  in   the  past   the   performance  character is t ics  of the 
commercial   cesium  beam  clocks  used  in  the  AT(NBS) 
atomic  time  scale.  Two  other  techniques  have  also 
been  employed  to  evaluate a clock's  performance,  viz. ,  
interclock  comparisons  and  comparisons  with  other 
national  laboratories. 

Utilizing  the  above  performance  data we have 
constructed  models  for  the  behavior of ces ium  beam 
atomic  clocks.   Based on these  models  and  appropriate 
optimization  procedures,  algorithms  have  been  devel- 
oped  to  generate  an  atomic  time  scale,AT(NBS),  from 
the  ensemble of standards  available  to  us.  The  model 
i s  shown  to  well  fit  both  individual  clocks a s   we l l  as 
clock  ensembles.  This  modeling  provides a d i rec t  
opportunity  for  clock  data  simulation.  Simulation  tech- 
niques  are  developed  and  applied  in  the  testing of some 
diagnostic  tests  for  frequency  and/or  t ime  steps.   The 
resu l t s   a re   very   encouraging  as a new  effort  for  even 
better  clock  modeling. 

Rate  calibrations of AT(NBS),  UTC(XBS),  TAI, 
and  other  national  time  scales  are  given  with  reference 
to NBS-5,  and  these  are  compared  with  other  past  pri- 
m a r y   c e s i u m  b e a m  frequency  standards.   TAI  was 
measured  as  too high  in  rate by 12 i 5 par t s  in d 3 .  
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I. Introduction 

A mathematical  model  describing  the  systematic 
and  random  behavior  of atomic  clocks is useful  in  the 
design of a lgori thms  for   construct ing  t ime  scales ,   and 
we  have  developed  such a model  for  cesium  beam  clocks 
[l].  The  validity of our  model  is   supported by three 
types of evidence.   Firs t ,   i t  is consistent  with  time- 
domain  measurements  of stability  obtained  by  compari- 
son  of several  independent  clocks.  Second,  it   includes 
the  frequency  drift  which  can  be  observed  with  respect 
to  our  new  frequency  standard, NBS-5 [2 ,  31. Third,   i t  
is consistent  with  long-term  comparisons of our clocks 
with  other  timing  centers  via  the  International  Atomic 
Time  Scale  (TAI)  [4]. 

In principle,  if one  had a perfect  clock,  one  could 
set   i t s   t ime  and  f requency  in   agreement   with  some  per-  
fect  reference,  and  there  would  be no t ime  dispersion. 

In   pract ice ,  of course,   there   is   a lways  t ime  dispers ion,  
and  the  modeling of the dispers ion  character is t ics   per-  
mi t s  the  design of time  scale  algorithms  which  mini- 
mize  i ts   effects.   The  extent of this  dispersion  can  be 
seen  by  comparing  some of the  best   atomic  t ime  scales 
in  the  world  with TAI, which is probably  the  best 
reference  in  the  world.  

The  ra te   or igin of TA1 was determined a s  follows: 
During  1968 B. Guinot,  Director of the  Bureau  Inter-  
national  de  1'Heure  (BIH)  where TA1 is generated [4], 
made  very  careful   measurements   via   Loran-C of the 
time  and  frequency  differences  between  the  three  atomic 
t ime  scales  AT(F),   AT(PTB),  and  AT(USN0)l.   Weights 
of 1,  1,  and 2 were  given  respectively  to  the  frequencies 
of these  three  scales  to  determine a weighted  frequency 
to  be  given  to  the TA1 scale  (see  Table  1)  beginning 
1 January  1969.  Four  other  atomic  time  scales  were 
added  during  1969:  Royal  Greenwich  Observatory  (RGO), 
8 April  1969;  National  Research  Council  (NRC),  18  May 
1969; NBS, 27 June  1963;  and  Observatoire  de  Neuchatel 
(ON), 4 December  1969,  but  in  each  case a r a t e   o r   f r e -  
quency  compensation  was  applied so a s   t o   no t   pe r tu rb  
the  ra te  of TA1 [4].  In Fig.  1, we have  plotted  the  time 
dispersion of the  three  time  scales  which  determined  the 
rate   or igin of TA1 with  appropriate  t ime  and  rate  com- 
pensations (as determined by B. Guinot) a s  of 1 January 
1969 ( i . e . ,   there   were   no   in i t ia l   t ime  or   ra te   e r rors   in  
the  compensated  scales).  In  addition  we  have  plotted 
with  similar  compensation  the  t ime  dispersion of 
AT(NRC)  since  it  is frequently  calibrated  with  the NRC 
CS I11 primary  frequency  standard,   and of AT(NBS) fo r  
comparison  purposes.   I t   is   interesting  to  note  that   the 
peak-to-peak  dispersion  among  these  atomic  time  scales 
is a lmost  100 ps in a l i t t le  over  four  years '   t ime. 

TABLE 1 - TA1 Rate 
Determined 1 January  1969 

Time  Scale Weight - Rate 

A T ( F )  2 5% C 6 5  ns  /day 

AT(PTB)  2 5% t 15  nslday 

AT(USN0) 50% - 40 ns/day 

AT(F)  is the  a tomic  t ime  scale   for   France  and  has   con-  
sisted of an  ensemble of f rom 5 to 7 commerc ia l ces ium 
beam  clocks  located  a t   var ious of  the  key  Iaboratories 
in   France.   AT(PTB) is the  atomic  t ime  scale of the 
Physikalisch-Technische  Bundesanstalt ,   Braunschweig,  
Federal   Republic of Germany.  This  scale  has  consisted 
of an   ensemble  of 4 to 6 commercial   cesium  beam  clocks.  
AT(USN0) is the  atomic  t ime  scale of the U. S. Nava l  
Observatory  denoted by i t s  staff as  MEAN(USN0)  or 
A. 1,   and  has  consisted of 14  to 16 commerc ia l   ces ium 
beam  clocks [ 51. 
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U. Clock  Characterization,  and  Simulation 

A Model  for  the  Time  Dispersion  in a Ces ium  Beam 
Clock 

Fig. 1 - Time  dispersion  with  respect  to TA1 of some 
. of thr  independent  atomic  t ime  scales  con- 

tributing  to  make  up  TAI.  Time  and  rate 
compensations  were  made  to  bring  each  scale 
in  agreement  with TA1 at  the  origin of each 
scale   as   plot ted.  

Each of these  a tomic  t ime  scales  is composed of 
an  ensemble of commercial   cesium  beam  clocks  whose 
t imes  are  combined  through  some  algorithm  to  generate 
one  atomic  time  scale. One would  expect  that  the  dis- 
pers ion  of any one of these  ensembles would  be l e s s  on 
the  average  than  that of a n  individual  clock.  The  dis- 
persion  shown  in  Fig. 1 is  large  comparcd  to  the  needs 
for  nluch  smaller  syrch:-onization  tolerances  and  to  the 
theoretical   dispersion due to pur,.' shot  noise  (idealistic 
l imi t )  of an  individual  c-csium  be2m  (-lock  (about 1 p S 
over the same  4-year   per iod) .  ,A-e will  investigate  this 
dispersion  in  more  detail .  

The  need  for a pr imary  f requency  s tandard of high 
accuracy  becomes  apparent  if e i ther  a frequency  drift 
o r  a frequency  offset   exists  in a clock--both of which 
appear to  be  present  in  the  ensembles  considered  above. 
The  t ime  dispersion  is   quadratic  or  l inear  respectively 
i f  such a problem  exis ts .   These  and  other   kinds of 
dispersion  are  examined  using  the  new  accuracy  and 
stability  available  with NBS-5. 

Once a tractable  and  well-fitting  model  has  been 
established to describe a clock's  performance,  then one 
may  employ  optimization  techniques  based  on  the  model 
to  objectively  detect  clock  problems  and  to  minimize 
time  dispersion.  Some of these  ideas   are   tes ted  on a 
pa i r  of clocks  in  the  AT(NBS)  ensemble  for  measuring 
the  par t icular   parameters   for   model ing  this   pair  of 
clocks. 

Let the ideal  t ime  be  represented by  t, and  the 
t ime of clock i by ti.  Then  time  difference of clock i 
f rom  idea l   t ime  i s :  

T. (t) = ti - t 

The  proposed  model  for  characterizing why Eq. (1)  i s  
non-zero  is   represented  by  the  four   terms  in   Eq.  (2).  

r -. 
Ti(t) = Ti(to) + R.(t ) X t 

l 0  p 0 1  
+ - D x [t - top+ xi(t) 

1 
2 i  

The  f i rs t   term  on  the  r ight  of Eq. (2)  r ep resen t s  the 
error  in  synchronization  originally  (at  t = to).  The 
second  term  represents   the  error   in   syntonizat ion 
originally;   i .e. ,   an  error  in  the  calibration of the  rate 
o r  the  frequency of clock i. The   th i rd   t e rm  represents  
the  time  dispersion  due  to  linear  frequency  drift  in  the 
i-th  clock.  The  fourth  term  is  due to the  random  fluctu- 
ations of the  time of clock  i. 

The   f i r s t   th ree   t e rms  of Eq. ( 2 )  are   ca tegor ica l ly  
deterministic  and  non-random.  The  last   term  being 
random is best   characterized  statist ically.   The  t ime 
dispersion  due  to  contributions  from  the  f irst   three 
terms  is   constant ,   l inear ,   and  quadrat ic   respect ively.  
The  time  dispersion  due  to  contributions  from  the  last 
term  depends  on  the  noise  spectrum of the  random 
fluctuations  in  the  i-th  clock.  Typically, we have  found 
that  the  random  fluctuations  in a ces ium  beam  c lock   a re  
wel l   represented by power  law  spectral   densit ies with 
the  predominant  terms  as  follows: 

( 3 )  

where  Syi(f)  denotes  the  spectral  density of the  fraction- 
al frequency  fluctuations, y i  = r, at  Fourier  frequency 
f for  the  i- th  clock.  The  coefficients  ho.and  h-liare  the 
intensit ies of the  white  noise  frequency m'odulation (FM) 
and of the  flicker  noise  FM  respectively.  The  value of 
h .may be calculated  f rom  physical   measurements   ( i .e . ,  
the  signal-to-noise  ratio  at  the  detector of the ces ium 
beam  tube,  resonance  linewidth,  limitations  in  the 
excitation  electronics,   etc.  ). The  cause of the fl icker 
noise  FM  is  not  known  and  should be measured  for   each 
cesium  beam  clock.  For  Eq. ( 3 )  the  time  domain 
stabil i ty  using  an  Allan  variance  measurement  method 
i s  given by [ 6,  71: 

X i  

01 

The  time  dispersion  contributed  by  these two kinds of 
noise  depends  upon the par t icu lar   a lgor i thm u s p d  in 
generating  t ime [8]. If we assume  opt imal   procedures  
(optimum  in  the  sense of minimum  squared   e r ror ) ,  the 
t ime  dispersion  for  white  noise F M  i s  TU ( T ) ,  and  for 
f l icker  noise F M  i s  1. 3 T U  (7). F o r  the two noise 
processes   in   Eq.  ( 3 )  the  minimum  squared  t ime  dis-  Y 

pers ion  ut i l iz ing  opt imum  processing  is :  

Y 
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One  observes  that  the  time  dispersion is proportional 
to  the  square  root of time  for  white  noise FM and  l inear  
with  time for fl icker  noise F M  (square  root  of Eq. (5)). 

If a significant  level of l inear  frequency  drift  is 
present   and  is not  removed  before  analyzing  the  random 
contributions,   i t   is   easy  to  show  that  this  will   cause a 
contribution  to  the  instability a s  follows: 

Simulation of the  Performance of a Cesium  Beam  Clock 

Assuming  that  the  model  stated  in  the  previous 
subsection is a good  one for a cesium  beam  clock,   i t  
becomes  obviously  desirable  to  be  able  to  simulate  this 
model. One of the  main  advantages of this  simulated 
data is   the  freedom  gained  in  testing  t imekeeping  algo- 
r i thms.  It is beyond  the  scope of this  paper  to  fully 
exploit  this  advantage. We will  simply  point out some 
of the  insights  gleaned  from  simulation,  show how to 
simulate,  and  later  in  the  paper  do  some  simulation  and 
pe r fo rm  some   t e s t s  on some  par t icular   a lgori thms.  

A model   representat ive of Eq. ( 2 )  i s :  

z ( t )  = a + bt + ct + x(t), 2 
(7 1 

where  the a ,  b,  and c can be chosen  appropriate  to  the 
t ime  error ,   f requency  error ,   and  f requency  dr i f t   ra te  
respectively of the  clock  being  modeled.  The  random 
variable ,   x( t ) ,  a s  has  been  shown [9] can be generated 
f r o m  a set  of random  uncorrelated  numbers ( R U N s )  
( i . e . ,  Lero  mean),   which  are  often  available  as a com-  
puter  function. 

Specifically, i f  a plot of Eq. ( 4 )  is   made  with 
log U ( 7 )  as  the  ordinate  and  log 7 a s  the  abscissa,  
there  wlll  be  an  intercept  between  the two kinds of noise, 
i ,  e.,   the  point  where  the  intensity of the  white  noise 
FM is  equal  to  the  intensity of the  flicker  noise FM.  
Associated  with  this  point  there  will  be a particular 
value of T--call   i t  T~ (TI = h0/ (4h- l  an 2 ) ) .  We wish  to 
generate a d iscre te   se t  of data yn with  spacing TO and 
which are   s ta t is t ical ly   modeled by Eq. (4) where now y 
becomes  discrete  and  is   given by y, = - X,,,)/T~ . 
Also  for  equally  spaced  discrete  data,   an  estimate of 
02(+r )  f r o m  a finite  set of such  data  takes  on a ve ry  
s lmple  form: 

Y .  

Y 

where M is the  number of data  points. A se t  yn  can 
be  generated  using  the  following  recursive  equations 
[91: 

and  

where 

Y(') = 0.777 T ~ / T ~ ,  

The  superscript   on y is the  order   in   the  recursive 
sequence--the f i n a l  output  for  each  entry  in  the  dis  rete 
data  set  by(isyg  y,!3!. Init ially,   set  y b l ) =  yb2)= yh3j = 0, 
and  set  y1 equal  to  the  f irst   random  uncorrelated 
n u n b e r  (RUN), which  thenallows  one  to  generate y i 3 ) - -  
the  first  di-screte  data  point.  Next  make  the  replace- 
ments   ynt i   f rom  the  las t   recursive  sequence  into 
y$) for  the  new  recursive  sequence,  and  then  call a new 
RUN f o r   y i f l ,   e t c .  If the  RUNs are   normally  dis t r ibuted 
with  unit  variance  (and zero mean  s ince  they  are   un-  
correlated),  then  the  yi3)  will  be  normally  distributed 
with U'(, ) = 1/64.  The  factor  1/64  is  due  to  the  filter 
response  given  in Eq. (9). Since  t ime  is   the  integral  of 
the  frequency,  the f i n a l  s imulated  random  t ime  disper-  
sion  output  is,  therefore, 

Y O  

where m is the  m-th  discrete  random  time  fluctuation; 
this  equation  completes  the  model  for  the  discrete  case 
given  by  Eq. (7). The  above  recursive  equations  simu- 
late a random  process   whose  s ta t is t ical   propert ies   are  
within  about 5'7" of those  given  by  Eq.  (4)  over  at  least 
the  range T 5 T 5 1000 T ~ .  0 

One very  interest ing  observat ional   resul t   f rom  our  
studies of simulated  data  is  that  for  both  white  noise  FM 
and  f l icker  noise F M  the  time  fluctuations  as a function 
of t ime  appear  to  have  definite  changes  in  slope  from 
time  to  t ime.  One  is   tempted  to  assume  that   the  clock 
suffered a discrete  change  in  frequency,  even  though  no 
such  change  occurred,   and,   fur thermore,   these  changes 
are  totally  explainable by the  amount of energy  in  the 
low  frequencies of the  random  process.  A more   se r ious  
caution,  however, is that if the   data   are   opt imal ly   pro-  
cessed,  based  on a well-fitting  model,  any  other  algo- 
rithm  which  manipulates  the  data  further  can  only  make 
the  time  dispersion  worse. F i g .  2 is   an  example of 
simulated  f l icker  noise F M  with  lines  drawn  per  tempta- 
tion.  Flicker  noise F M  has  another   interest ing  property 
that,  as  was  shown by Mandelbrot [ lo] ,  i t  is self   s imilar--  
i .e . ,   an  expansion  or   contract ion of the  abscissa  and 
ordinate  equally  does  not  change  the  statistical  character 
of the  data. Or, in  other  words,  one  could  continue  to 
draw  s t ra ight   l ines   as   i l lust rated down  to  the  finest 
detai l   as   long  as   the  f l icker   noise  F M  process   p redomi -  
nated  in  that  region of Fourier   f requencies .  An in te res t -  
ing  result  of this  argument  is   that   one's  temptation  to 
draw  s t ra ight   l ines  is strongly  influenced  by  the  size of 
the  graph  paper  he  uses.   I t  is apparent  then  that  one 
may  be prone to  overmanipulate  the  data. We will 
develop  an  objective  test  for  recognizing  changes  in 
frequency  in  Section IV. 
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m e a s u r e  is  U (T), then  one  can  repeat  the  above  routine 
for  different T values,   and  thus  estimate  the  stabil i ty 
charac te r i s t ics   for   each   member  of the  clock  ensemble. 
Using the above  technique we show the stabil i ty  char- 
ac t e r i s t i c s  of CS 323  clock  in  the AT(NBS) sca le   in  
Fig. 3. Note  the  characterist ics of white  noise FM,  
flicker noise FM, and of l inear  frequency  drift .  

2 
Y 

F v 

b" 

I. 

l i  

Fig. 2 - A simulated  sample  of  flicker  noise F M  with 
arbitrary  straight  l ines  drawn  in  to  nominally 
fi t   the  data.   The  ordinate  and  abscissa  are 
a rb i t r a ry .   F ig ,  3 - Estimated  stabil i ty of C S  323 a s  deduced  from 

independent  interclock  comparisons. 

111. Some  Characterist ics of the  AT(NBS)  Scale In order  to  get   an  idea of the  deterministic  char- 
and  i ts   consti tuents  and  Other  Clock  Ensembles  acterist ic%  such as  the  frequency  drift,   one  needs a 

i reference  clock  which is better  than  any  one of the  clocks 

Characterization  via  Internal  Comparisons 

The  physical   arrangement c,f the  clocks  in  the 
AT(NBS)  ensemble is designed s o  that  they  are  inde- 
pendent  to a very  high  degree [ 1 l], and  the  assumption 
of statistical  independence  seems  to  be  valid.  Thus,  it  
is straightforward  to  show  that  the  individual  clock's l 
stabil i t ies  may be sorted  out  using  the  following 
equation: 

i 
I 

where 04 is some  kind of variance  measure  between 
clocks i and j ,  etc. ;  on2  is the  measurement   system 

noise  using  the  same  variance  measure  between  clocks 
i and j ,  e tc . ;   and up i s   a n   e s t i m a t e  of the  same l 

variance  measure  for  the  i- th  clock.  Given  three  clocks,  
one  can  permute  i ,  j ,  and k to  obtain  estimates  for i 

.ij 

i 

being  considered.  The  current  algorithm  used  to  gen- 
e r a t e  AT(NBS) is   designedso  that   the  stabil i ty of AT(NBS) 
is  better  than  the  best  clock  in  the  ensemble. In principle 
this  can  be  used as  a reference  clock,  but  has  the  dis- 
advantage  that  it is not  independent,  and  hence  gives  an 
optimistically  biased  estimate of the  performance of 
any  clock  which  is a member  of the  ensemble. 

Fig. 4 is a plot of the  frequencies of some of the 
clocks  in  the  AT(NBS)  ensemble  over  about  the  past 3 
yea r s  with  respect  to  AT(NBS). A rate  compensation 
has  been  applied  to  each  to  normalize  it   nominally  at its 
origin. As will   be  shown  later,   and  as  is   evident  from 
the  plot,  there is a significant  relative  frequency  drift 
in  the  CS 323 clock.  This  plot  gives  clear  evidence  for 
the  need of a pr imar   f requency  s tandard with an   accuracy  
of about 1 p a r t   i n  IOy3 in   order  to reduce  significantly 
the  quadratic  time  dispersion  that  is  apparently  present 
in  some  cesium  beam  clocks.  

and  k as  well.  Given L clocks  in   an  ensemble  there  
will  be (L-l) ! / (2 ! (4-3)  ! )  different  (not all inde- 

Utilization of NBS-5  to  Calibrate  the  AT(NBS)  Ensemble 

pendent)   es t imates  of U!. By taking  an  appropriate NBS-5, a new pr imary   ces ium  beam  f requency  
weighted combination--'recognizing that   some  es t imates  standard of the  National  Bureau of Standards,  became 
will  have  much  better  confidence  than  others--one  can operational a t  the end of ~~~~~b~~ 1 9 7 2 ,  after  which 
get a best  estimate  along  with  the  confidence of the  esti-  a of experiments were conducted. ~ ~ s - 5  
mate  for   this   par t icular   var iance  measure.  If the was  evaluated  using  the  "power  shift"  and  the  "pulse" 

methods [2 ,  31. Optimum  microwave  power  is   that  
setting  which  gives a maximum  signal  at   the  cesium 
detector.  In  order  to  evaluate  the  reproducibility of  
NBS-5 and to determine if there  was  any  significant 
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deterministic  frequency  drift  in AT(NBS) or   in   some of 
the  main  clocks of which i t  is composed, we examined 
the frequency  difference  between NBS-5 and  these 
clocks  on  each  occasion  when NBS-5 was operat ing  a t  
optimum  power.  These  frequency  differences  are  plotted 
in  Fig. 5. Experimentally,  we  estimated  that the mic ro -  
wave  power  could  be  set  at  optimum,  re  roducible  to 
within a fractional  frequency of 1 X lo-''. In  Fig. 5 
the  peak  variations  are  about 1 X of NBS-5 vs. 
AT(NBS)  giving  credence  to  this  estimated  uncertainty. 
The  cesium  beam  intensity  changed  some  over the 
course of these  experiments  because  the  cesium  oven 
w a s  often  turned off and  on  between  experiments. The 
last   run,  April  1973, w a s  just   pr ior   to  a recharge 
procedure of the  cesium  oven  in NBS-5. 

As  can  be  seen,  within  the  uncertainty of NBS-S's 
reproducibility  at  optimum  power (1 par t   in   there  
is no significant  frequency  drift  measurable 
in  AT(NBS) o r   i n  the  other  clocks  shown  from 6 De- 
cember  1972  to 6 April  1973.  Note  that  there  is a 
relative  drift  indicated  in  Fig. 5 between  CS  167  and 
CS 323 consistent  with  that  shown  in  Fig. 4 for  these 
same  clocks. 

Fig. 4 - Relative  fractional  frequencies of 6 selected 
clocks  in  the  AT(NBS)  scale as  a function of 
time  with  the  AT(NBS)  scale  used as  the 
reference.  
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Fig. 5 - A check of the reproducibility of the  frequency 
of NBS-5  using 6 selected  clocks  in  the  AT(NBS) 
scale  as  comparison  standards.   AT(NBS) is 
also  plotted  with  respect  to  NBS-5  to  determine 
if any  systematic  frequency  drift is present  in 
AT(NBS). 

The  UTC)NBS)  scale,  which  is  based on the  same 
ensemble of cesium  beam  clocks,  is coordinated  to  be  in 
time  and  frequency  agreement  with  the UTC scale  main- 
tained by the BIH (UTC-TA1 = integral   number of seconds, 
currently 12 S and  the  rates of UTC and TA1 a r e  the 
same).   The  rate of UTC(NBS) has  been  held  constant 
within  the  capabilities of the NBS clock  ensemble  and 
the  particular  algorithm  employed  since 1 Januar  1973, 
and  i t   is   estimated  to  be  within  about 1 part   in  lor3 of 
the  rate of UTC and  within  about 2 u s  of t ime  agreement.  
The  frequency  bias  parameters  for NBS-5 were  evalu- 
ated  sufficiently  to  give  preliminary  calibrations of the 
absolute  rate of UTC(NBS),  and  hence,  in  essence, of 
UTC and TA1 during  January,  February,  March,  and 
April  of 1973. These  are  plotted  in  Fig. 6 along  with 
the  internal  estimate of the  accuracy  associated  with 
each  preliminary  calibration.  The  best  estimate  shown 
in  Fig. 6 is based  on  some  methods  for  optimal  filtering 
[ l ] ,   and would  indicate  that  UTC(NBS)  is  too  high  in 
fractional  frequency by (10.4 f 5) X The  uncer-  
tainty of 5 X is   larger  than  the  internal  estimates 
for  most of the  individual  preliminary  calibrations 
because we have  included  some  accounting  for  aspects 
of NBS-5Is performance  which  remain  to  be  investi- 
gated  more  thoroughly [ l ,  2, 31'. Taking  into  account 
the  gravitational  red  shift  due  to  the  elevation  differ- 
ence  between  the BIH and  Boulder,  Colorado, we would 
estimate  that   the  rate of UTC o r  TA1 is too  high by 
about 12 f 6 par t s   in  10 . 
2 I n  [ 2 ]  an  uncertainty of 2 X 10-13  is  quoted.  However, 

this is a preliminary,   tentative  accuracy  subject  to 
further  experimental   verification. 

1 3  
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C S l I M T E  

The  apparent  flattening at the  right of Figs. 7 and 
8 is characterist ic of flicker  noise FM, but the  data 
were of insufficient  length  to  confirm  this  characteriza- 
tion  with  confidence.  It is not known whether  this 
apparent  flattening is due to  CS 601 or  NBS-5, or  both; 
more data a r e  needed.  Note  the  stability of 
u,,(T 2 64, 000 S )  5 4 X Using  Eq. (5), however, 
one  calculates a time  dispersion of 4 .7  ns  for C S  601 
a t  7 = 1 day and with Jm = 4 X A meas-  
ured  estimate of the  time  dispersion  using the current 
AT(Nl3S) algorithm  is  5 ns   for  C S  601--quite good 
agreement  in  support of the  proposed  model.  The  cor- 
responding  random  time  fluctuations  x(t)  for C S  601 vs. 
NBS-5 from  the  same  measurement is shown  in  Fig. 9. 

.Fig. 6 - Relative  fractional  frequencies of six  selected 
clocks  in  the AT(NBS) scale   as  a function  with 
the AT(NBS) scale  used  as  the  reference. a 181-5  v s .  C O M Y L R L l A L  C E S I U M  OSLllLATOR 
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.* ( E A R L Y  1973)  

During  the  dates of 1 3  to 22 January  1973 we . , @ - l 2  E 
- '* .. 

- 
measured  several of the cesium  beam  clocks  in  the NB: -- 
clock  ensemble  with NBS-5 running  at  optimum  power. 
This  measurement was in  an  effort to observe  the I @ ~ ' )  

ple of a u (7) vs. T stability  plot.  The  sample  time 
calibrate  their  absolute  frequency. F i g .  7 is an  exam- 
stability  characteristics of the clocks a s  well a s  to .A 

= 

pair of fractional  frequency  differences  was  averaged 
T is  the tlme  interval  over  which  each of an  adjacent 

per  Eq. (8). C S  601 is a high-performance  commercia' 

..a . ' 

* .  

9 1 0 1 6  ' , . * , . , * 1  ' ' ' . . ~ ~ . '  ' ' ~ 1 1 ' , ~ 1  8 l . l ~ '  ' ' L t L n d  

I U  I O 2  l o 3  l od 1 os  l 0 6  

S M P L t  T I M I  i(11 

cesium  beam  tube.  For C S  601 vs.  NBS-5 we obtained 
a value  for of 7 . 6  X T h e  contribution due 
to NBS-5 was  about 4 X 10-l' as  determined  from 
short-term  stability  data  vs. a quartz  crystal  oscillator 

F i g .  8 - Fractional  frequency  stability  comparison of 
NBS-5 vs. a quartz  crystal  oscillator  in  short 
term,  and C S  601 for  longer  sample  times. 

(see F i g .  8). From  these  data one would conclude  that 
C , l  had a white  noise F M  level of about 5 X for 

Fig. 7 1 Fractional  frequency  stability of CS 601  (a 
member of the AT(NBS) ensemble)   as  
measured by NBS-5. 
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Comparison of AT(NBS)  with  National  and  International 
Standards 

Aside   f rom NBS-5  the pas t   th ree   eva lua ted   p r i -  
mary  cesium  beam  frequency  s tandards  have  been  the 
NRC CsIII [ 12, 131, the PTB CS 1 [14], and NBS-I11 [IS] .  
We have  plotted  the  fractional  frequencies of the  five 
time  scales  AT(F),  AT(NBS),  AT(NRC),  AT(PTB),  and 
AT(USNO),  whose  time  dispersions  were  plotted  in  Fig. 
1, plus  that of TA1 with  reference  to the four   p r imary  
frequency  standards  mentioned  above,  and at  the time 
each  was  evaluated.  These  results are shown  in  Fig. 
10 .  The  accuracies  (1 U) quoted  for  these  four  stand- 
ards  taken  chronologically  are 5 X for  NBS-III, 
4. 5 X for   PTB  CS 1, 15 X (W 217) f o r  NRC 
CS 111, and 5 X for  NBS-5. The  calibration  periods 
for   each  were May 1969, March-July 1970. 2 July - 9 
November 1970, and  January-April  1973,  respectively . 3 

There   a re   severa l   very   in te res t ing   observa t ions   one   can  
make  about  the  data  shown  in  this  figure.  Some of them 
a r e :  Most of the  t ime  scales  are  too  high  in  frequency; 
AT(F)   appears  to have a negative  frequency  drift,  while 
AT(NRC)  and  AT(USN0)  appear  to  have a posi t ive  f re-  
quency  drift;  the  fractional  frequency of PTB  CS 1 
appears  to  be  lower  than  that  of M C  CS I11  by about 
4 X as   obse rved   f rom the correlat ion  ( this ,  of 
course ,  is well  within  the  accuracies  quoted);  and  the 
fractional  frequency of AT(NBS)  appears to have  changed 
less   than 1 X over  about 4 years according  to  the 
NBS-I11 and  NBS-5  calibrations  (this  is  much  better  than 
either  the  accuracies of  NBS-111 or NBS-5 or of the e s t i -  
mated  frequency  dispersion  in AT(NBS)) .  

I 1  I I I I I 
1 9 t 5  I 9 7 0  1 1 7 1   1 9 7 2   1 9 7 3  

Fig .  10 - The  frequency  offsets of some A T  sca les  a s  
measured  by different  primary  laboratory 
cesium  beam  frequency  standards  (via 
Loran-C).  

Data  were  presented at  12-14  June 1973 Frequency 
Control  Symposium  on NRC C S  V. The NRC staff 
have  measured  the  fractional  frequency of TA1 a t  
(t 10  i 2 )  X I O - 1 3  with  respect  to  this  new NRC f r e -  
quency  standard [ 161 in  excellent  agreement  with NBS-5. 
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In  Fig. 1 1  we have  plotted  the  fractional  frequen- 
c ies  of the  same  five  scales  during  the  same  calibration 
periods  but  with  respect  to TA1 instead of the p r imary  
standards.  In this  case  both  AT(F)  and  AT(NBS)  appear 
to  have  negative  frequency  drifts.  The  uncertainty  in 
each of the  points  plotted  is  about 1 o r  2 par t s   in  10 13 

due  to the uncertainty of frequency  transfer  via  the 
Loran-C  system [ 171. 

1969 1 9 7 0  197 I 1 9 7 2  1913 

Fig. 11 - The  frequencies of some  a tomic   t ime  sca les  
as   compared  with TA1 (via   Loran-C)  as  
measured  during  the  same  evaluation  periods 
a s   f o r  the  data  in  Fig. 10.  

Analyzing  the  stability  characteristics of each  of 
these  five  national  time  scales  with  respect  to TA1 using 
the  data from the BIH annual  report  [4] and  f rom  their  
monthly  Circular D Bulletin  yields  further  confirmation 
of the  validity of the  model  proposed  in  Section 11. 
(Note: One must  realize  that  the  following  results  with 
TA1 a s  the  reference  will be optimistically  biased  since 
each of these  five  time  scales  contributes  to  TAI.) In 
Fig. 12 we have  plotted U ( 7 )  vs. 7 fo r   AT(F)   a s  a 
typical  example.  The  stagility  plotted  on the left of 
each  f igure  where U (7) decreases  with  increasing 7 

is the  noise  caused by the  Loran-C  system  including  its 
propagation  fluctuations [17]. The  flat  portion is an  
optimistically  biased  estimate of the  flicker  noise  FM 
of the  particular  clock  ensemble.  The U ( 7 )  proportional 
to at  the  right m a y  be  caused by linear  frequency 
drift.   This  seems  ta  be  confirmed  when  looking  at  the 
quadratic  behavior of the  time  dispersion  shown  in  Fig. 
13 ,  but  one  should be cautious  about  such  appearances 
(e.   g. ,   step  changes  in  frequency as  mentioned  ear l ier) .  

Y 

Y 

One  can  estimate  linear  frequency  drift  in  several 
ways, e .  g . ,  by  fitting a least-squares  quadratic  to  the 
time  fluctuations, a l inear   l eas t - squares  f i t  to  the  fre- 
quency  fluctuations,  or by using  Eq. (6) which is a 
l inear   es t imator .  It i s   apparent   f rom  other   considera-  
tions [8] that  the  last two examples   a re   be t te r   es t imators  
than  the  first  but we have  not  determined  which  is   better 
of the  las t  two.  Taking a l inear   least-squares  f i t  to the 
frequency  yields  the  results  shown in Table 2. If we use  
Eq. (6)  we obtain  results  in  reasonable  agreement  with 
Table 2 .  



TABLE 2 - Determined  from a Least-Squares-Fit  to 
the  Frequency  with  Respect  to TA1 (8 Jan 6 9 - 2 8  Mar 73) 

AT(i) 

F 

NBS 

NRC 

P T  B 

USNO 

Frequency  Drift 
(Parts  in  1013/year) 

- 1.6 

- 1 .2  

t 1.4  

- 0 . 7  

t 1.3 

Fig. 12. - Fractional  frequency  stability of AT(F)  with 
respect to TA1 (no  frequency  drift  removed). 
Typical of other  AT  scales. 

c 

Fig.  13.-  Time  fluctuations of AT(F)  with  respect to 
TA1 (no frequency  drift  removed).  Typical 
of other AT scales. 

After  we  removed a linear  least-squares  fit  to  the 
frequency  we  analyzed  the  remaining  random  fluctuations 
and  the  stability of AT(F) as  an  example is plotted  in  Fig. 14. 

It is interesting to note  that  most of the  clock  ensembles 
were  characterized by flicker  noise  FM  in  the  range 
40 days S T 5 200 days. The  least-squares  fit  applied 
to  the  data f i l ters  the  very low frequencies [8] so that 
Uj,(T) for T =  320 days  and T = 640  days a re   decreased  
significantly. A typical  example of the  residual  time 
fluctuations is shown  for  AT(F)  in F i g .  15. Note how 
similar this plot is in  character to the  simulated  flicker 
noise  FM shown  in F i g .  2. 

F i g .  14 - Fractional  frequency  stability of AT(F) with 
respect  to TA1 (frequency  drift  removed by 
least-squares  fit to the  frequency).  Typical 
of other  AT  scales. 

F i g .  15 - Residual  time  fluctuations of AT(F) with 
respect to TA1 (frequency  drift  removed by 

\I RUNNING T I M E  

least-squares f i t  to  the  frequency).  Typical 
341 of other  AT  scales. 



IV. Objective  Filtering of 
Time  and  Frequency  Steps  in a Clock 

It is commonly  recognized  that  discrete  steps  in 
time  and  in  frequency  occasionally  occur  in  ceaium 
beam  clocks [5]. In  such  cases  diagnostic  routines 
should be implemented to objectively  ascertain if a 
change  in  frequency is statistically  significant. If such 
steps  occur the clock  model  given by Eq. ( 2 )  is not 
complete,  but  needs a reevaluation of Ti(to)  or  Ri(to) if 
a time  or  frequency  step  occurs  respectively  (for  con- 
venience  call  these  T-steps  or  F-steps  respectively). 

An F-step  may  be  detected  as  follows:  First, 
take the first  derivative of the  frequency p. Define 
the  signal S to  be  an  F-step,  which  will  be a 6-function 
after  the  derivative is taken.  The  spectral  density of 
the  signal  Ss(f) is a constant  from  zero  hertz up to the 
Nyquist  frequency of the  assumed  discrete  data.  Define 
the  noise a s  that  given by the  proposed  model  in Eq. (2)  
via  the  above  time  derivative,  i.e., d2 (Ti(t))  = If(t). 
Using Eq. ( 3 )  we find  the  spectral dt2 density of 
the  noise  to  be: 

S ( f )  = ( 2 ~ )  h f + (2T)h-lf. 2 2  
2 0 

Taking  the  second  time  derivative  removes  the  first 
two terms of Eq. ( 2 ) ,  viz.,  time  and  frequency  offsets; 
however,  the  frequency dr i f t  term  causes  ;to  have a 
non-zero  average. With signal  and  noise  defined,  the 
problem  becomes a classic one  in optimum  signal  de- 
tection  in the presence of noise. We desire to deter-  
mine if the signal is present   or  not, and  therefore  need 
to design  for a maximum  signal-to-noise  ratio. It is 
clear by examining the spectral  densities  for  the  signal 
and  noise  above  that  this  can  be  accomplished  with  an 
appropriate  low-pass  filter.  Since  the  size of the F-  
steps is not known a priori,  it   generally m a y  be desir-  
able to use  f i l ters with different  time  constants so that 
big steps  may  be  recognized  quickly  while  smaller  ones 
take  more  time.  Once  an  F-step is recognized one can 
return to quantify i t  with an  optimum  filter  time  con- 
stant.  Compromises,  also,  often  have  to be made due 
to finite  data  lengths,  i.e.,  as  the  filter  time  constant 
gets  longer the degrees of freedom  reduce.  Further, 
one may  not  be  willing  to  wait  too  long  before  correct- 
ing  and  updating a time  scale's  performance  since  its 
time  readings  are  typically  periodically  published  as  an 
ongoing process  (backtracking is difEicult). 

Fig.  16a  shows  the  results of processing  608  days 
of the time  difference  Tcs  167(t) - T c s  323(t)  through 
an  F-step  detector  consisting of a cascade of three 
R-C low-pass  filters--each  with a time  constant of 10 
days.  The  time  constant of the cascade  is 3~ = 17 days; 
hence, the plot  represents  608/17 36 degrees of f ree-  
dom.  Thus  for  normally  distributed  noise,  the  proba- 
bility of one excursion  past a 3 U limit is less  than  10%. 
We conclude  that  with  reasonable  probability, two F- 
steps  were  detected  between  the  clocks  during  the  608 
days.  Notice  also  that  the  average  is  biased  above  zero 
due  to the relative  frequency  drift  between  the two 
cesium  clocks.  This  bias  amounts  to 0.18 ns/day2 o r  
7 .4  X 1 0 - W y e a r .  

processed  through  the  same  step  detector  and the output 
of the processor  is  shown  in  Fig.  16b.  (The  T-step 
detector is explained  below.) A plot of the  fractional 
frequency of both  the  raw  data  and  the  data  corrected 
for  the two F-steps  and  the one T-step is shown  in F i g .  
17.  Each  data  point  is a 40-day  average. A time 
fluctuation  plot of the same  corrected  data is a lso shown 
in  Fig.  18,  and a time-domain  stability  plot  is  shown  in 
Fig. 1 9  a s  the  circles " 0 " .  

L + l o  
0 

- l a  

Fig. 16a - Second  finite  difference of the  time  differ- 
ences ( -  second  derivative of the  time 
differences)  between  CS 167 - C S  323 
processed  through  an  F-step  detector to 
ascertain if frequency  steps  have  occurred. 

Fig. 16b- Same  as 16a but with  frequency  drift, 2 
F-steps,  and 1 T-step  removed. 

Th.e same  data--after  removing  the  frequency 
drift,  the two F-steps,   and the one T-step--were 
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Fig. 17 - Fractional  frequency of CS 167 - C S  323 with Fig.  19 - Fractional  frequency  stability of CS 167 - 
and without corrections  applied. CS 323 after  removal of frequency  drift, 

2 F-steps, and  1  T-step. 

Once  the stability  characteristics  are known, 
these  data  can be simulated  using Eq. (9). This  was 
done and the time-domain  stability  plot of these  simu- 
lated  data  are shown a s  the triangles "A" in  Fig. 19; 
a lso shown a s  the solid  line  in Fig.  l 9  i s  the theoretical 
stability  given by Eq. (4). Note the apparent  flicker 
noise  FM  level of about 4 X The simulated  data 
were  also  processed through  the same  step  detector  and 
the resultant output is  shown in  Fig.  20--the  appearance 
being very  similar  to  that shown in Fig. 16b for the real  
clocks  after  corrections.  Fig. 21 shows  the simulated 
time  fluctuations  for the same clock pair, and  again the 
characteristic  appearance  is  very  similar to the real  
clock data after  corrections shown  in Fig. 18. A least- 
squares  fit  to the frequency of the simulated  data  was 
also  determined  where such  a  drift w a s  known not to 
exist. We measured 0.67 X 10-13/year  more than  a 
factor of 10 smaller than  was measured  for the real  
clock  data. 

To detect  optimally  T-steps,  invert Eq. (9)  as  
follows : 

and 
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S I M U L A T E D  N O I S E  OF C S  1 6 7 - C S  3 2 3  C L O C V S  
F I L T E R E D  B V   F R E Q U E N C V - S T E P  D E T E C T O R  

+ l a  
0 

- 1 u  

- 2 0  

correlated  numbers,  RUNS,  with  unit  variance  after 
similar  normalization  as  in  Eq. (9 ) .  Further ,  if the 
real  clock  data  are  normally  distributed  then the y;:] 
output  will  be  also. If a T-step  occurs,  once  this 
sequence  is  initiated,  it  will  generate  through the recur -  
sion  sequence a perturbed  point  which,  with  some 
probability,  will  exceed the probable  excursion  for  the 
sample  size.  For  the  particular  clock  pair  used  above 
a step  in  the  time  difference of - 86 ns -+ 14 ns  was 
detected  at  the  point  indicated  in  Figs. 16b and 18. For  
the  forward  pass on the  data  set  the  T-step  was  out by 
4 . 2  U. The  Confidence of the  estimate  was  improved 
after the  fact  to 14 ns by processing the data  backward 
to  where  the  T-step  occurred. 

Finally  in  Fig. 2 2  the  inverse  filtered  data  were 
plotted  to  test  for  distribution  and  variance  after  the  T- 
step w a s  removed. The data a r e  obviously  in  very good 
agreement  with  the  theoretical  model  hypothesized. 

4w- 
1 M O N T H  

i 2  
f 

0.2 n s /  day 

Fig. 20 - Computer  simulated  data f o r  C S  167 - C S  323 
processed  through  same  F-step  detector as 
in 16 above. 

Fig. 21 - 

Using  the 

Random  time  fluctuations of computer 
simulated  model of C S  167 - C S  323 (to be 
compared  with 18 above). 

stabilitv  characteristics  as  determined  from 
Fig.   19,  calculatk Y ( l ) ,  ~ ( ~ 1 ,  and y ( 3 )  as in Eq. (9). 
(A T-step  has  very  little  effect on the  stability  char- 
acterization  and o ( 7 )  was  actually  calculated  prior to 
the  determination of the  T-step,  even though the  stability 
plotted  in  Fig. 19 w a s  made  after  the  determination  and 
removal of the  T-step.)  In  inverse  order of Eq. (9)  the 
input  to  the  filter  (recursive  sequence) is the  real  clock 
data  corrected for frequency  drift  and  F-steps;  these 

Y 
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F i g .  2 2  - The corrected  data  for C S  167 - C S  323,  
inverse  filtered  and  plotted to test   for  normal 
distribution  and  unit  variance. 

V. Conclusions 

A tractable  well-fitting  model for the  time  dis- 
persion  in  cesium  beam  atomic  clocks  has  been  developed. 
The greatest  time  disperion--which  is  quadratic with 
time--may  result  from a linear  frequency  drift  which 
has  been  observed in.individ-l clocks  and  in  clock 
ensembles.  The  size of this  drift  varies  from  unit to 
unit  and  ensemble  to  ensemble,  and  values  have  been 
measured  from  less  than 1 part   in  1013 per  year up t o  
several   parts  in  per  year.  The  above  dispersion 
characteristic  alone  points  out the need  for  an  evaluable 
primary  frequency  standard  with  an  accuracy of about 
1 part  in  The  operation of NBS-5 has  helped 
considerably  in  ascertajning  the  degree of some of these 
frequency  drift  problems. It is apparent  that  subsequent 
calibrations  with NBS-5 and  with  primary  standards 
from  other  national  laboratories  will  be  very  meaningful. 

data a re   en t e red   a t  y.531. And, similar  to  Eq. (9),  the 
output is the yn'+] whlch in  theory  will  be  random un- 
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Specifically,  NBS-5  was  used  to  ascertain if there  
were  any  measurable  drift   in  the  AT(NBS)  scale,   and 
within  an  uncertainty of 1 pa r t   i n   10 l3  no observable 
drift   was  measured  between 6 December 1972 and 
6 April  1973. In addition, we calibrated  the  rate of 
AT(NBS)  and  the  rate of UTC(NBS)  using  NBS-5.  The 
cur ren t   bes t   es t imate  of the  rate  for  UTC(NBS)  is 
t 10.4 f 5 par ts   in   The  las t   cal ibrat ion of 
AT(NBS)  prior  to N B - 5   w a s  with NBS-I11 in May  1969. 
Using  AT(NBS) a s  a memory ,  NBS-111 and  NBS-5  agree 
in  frequency to  within 1 p a r t  in 

Linear   rms  t ime  dispers ion  may  resul t   f rom 
e i the r   an   e r ro r   i n  the  frequency  calibration of a clock 
o r   f r o m  the  clock  being  perturbed by fl icker  noise  FM. 
The  rms  t ime  dispersion  due  to  the  various  levels of 
f l icker  noise  FM  measured  in  individual  clocks  and 
ensembles   var ied   f rom  about  1 to 8 p s  per   year .  In 
contrast ,   the  four  last   calibrations  with  evaluable  pri-  
mary  cesium  beam  frequency  s tandards  would  indicate  
that  most of the  major  atomic  t ime  scales  in  the  world,  
including UTC and  TAI,  are  currently  too  high  in  fre- 
quency  by  about 1 p a r t   i n  lo1'; and,  hence,   their   t ime 
scales  run  too  fast  by  about 30 p s  per   year   compared 
to a clock  more  nearly  in  agreement  with  the  above 
primary  standards.   Specifically,   NBS-5  measures TA1 
to  be  too  high  in  frequency  by  about 1 . 2  par t s   in  

Diagnostic  routines  have  been  developed  to  detect 
optimally  steps  in  either  the  time  or  the  frequency of a 
clock.  These  diagnostics  were  tested  on a pa i r  of 
clocks  in  the  AT(NBS)  ensemble,  and  detected two f r e -  
quency  steps  and  one  time  step  in  608  days of data. A 
method  for  simulating a ces ium  beam  c lock ' s   per form-  
ance  is  developed  and  utilized  to  test  the  diagnostics. 
An  obvious  opportunity is available  to  use  simulated 
clock  data  to  test  the  performance of a variety of t ime 
scale   a lgori thms  that   are   current ly   being  used  through-  
out  the  world. 

With the  availability of NBS-5 we were  a lso  able  
to measure  the  white  noise  FM,  which  is  another  impor- 
tant   performance  character is t ic  of cesium  beam  clocks,  
to  high  precisions  and  over  many  sample  time  decadks. 
The  time  dispersion  due  to  this  kind of no ise   i s   p ropor-  
tional  to  the  square  root of time.  Using  NBS-5 as the 
re ference  a root   mean  square  t ime  dispers ion  for  a 
high  performance  commercial   cesium  beam  clock  was 
est imated  to   be.  < 
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over  the  range of 1 S c T g 2 X l o 5  S. F o r  T = 1 day 
Eq. (14)  calculates  to be 4.7  ns.  The  AT(NBS)  scale 
a lgori thm  is   designed to  fully  utilize  this  performance. 
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